Empiric Antibiotics of Choice for Common Clinical Entities

Skin or Soft Tissue
- Uncomplicated, *Staphylococcus* cellulitis: Group A β-hemolytic streptococci or *Staph aureus* (rule of MRSA unknown)
 - Empiric: Cefazolin
 - PO: Cefazolin
- Complicated cellulitis: 2° to diabetic cutaneous or pressure ulcer; trauma or surgery – polymicrobial
 - Empiric: Ampicillin/Sulbactam +/- Vancomycin or Pip/Tazo +/- Vancomycin

Pneumonia
- Community Acquired (CAP)
 - Empiric: Piperacillin/Piperacillin/Tazobactam or Ceftriaxone, May use cephalosporins for MRSA
 - PO: Linezolid
 - PO: Lincosamides
 - Vancomycin
 - Vancomycin + Meropenem
 - Meropenem
 - Meropenem (ID, intensivist only)
 - Vancomycin
 - Vancomycin (ID, intensivist only)

- Skin Abscesses
 - Empiric: Vancomycin
 - PO: Sulfamethoxazole/Trimethoprim, May use cephalosporins for MRSA

Bone and Joint
- Osteomyelitis, acute (hematogenous)
 - Empiric: Vancomycin
 - PO: Vancomycin
- Septic Arthritis
 - Empiric: Vancomycin
 - Vancomycin
 - Ceftriaxone or Pip/Tazo
- CNS Bacterial Meningitis – Community Acquired
 - Empiric: Vancomycin
 - PO: Vancomycin
 - PO: Ceftiraxone
 - PO: Vancomycin
 - PO: Vancomycin

Upper Respiratory
 - PO: Amoxicillin/Clavulanate or Levofoxacin
 - PO: Penicillin, Amoxicillin, or Azithromycin

Lower Respiratory
- Acute – GNRs, GC
 - Empiric: Ciprofloxacin
 - PO: Sulfamethoxazole/TMP or Doxycycline

Abdominal
- Cholecystitis, Diverticulitis, Bowel Perforation, etc.
 - Empiric: Ceftriaxone (500mg q6h) or Metronidazole

Gastro-Intestinal Tract
- Acute – GNRs, GC
 - Empiric: Ciprofloxacin

Urogenital Tract
- UTI in males
 - Empiric: Ciprofloxacin

Other
- UTI in females
 - Empiric: Ciprofloxacin

Empiric Antibiotic Treatment

Alternative Antibiotic Choices – Comments

- **Suggested Duration of Antimicrobial Therapy for Common Infections**

<table>
<thead>
<tr>
<th>Infection</th>
<th>Duration</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pneumonia CAP</td>
<td>~ 5 days</td>
</tr>
<tr>
<td>VAP or infections due to pseudomonas or other NFGRN</td>
<td>7 days</td>
</tr>
<tr>
<td>Complicated intra-abdominal infection</td>
<td>10-14 days</td>
</tr>
<tr>
<td>Urinary tract infection Uncomplicated cystitis in female</td>
<td>10-14 days</td>
</tr>
<tr>
<td>UTI in males</td>
<td>10-14 days</td>
</tr>
<tr>
<td>Pyelonephritis</td>
<td>10-14 days</td>
</tr>
<tr>
<td>Cellulitis – Skin, soft tissue infection</td>
<td>5-10 days</td>
</tr>
<tr>
<td>Diabetic foot infection</td>
<td>7-21 days depending on severity of infection</td>
</tr>
</tbody>
</table>

Contributers
- Martha Blum MD, PhD. Infectious Diseases
- Djaoued Bouzar MS, CLS Microbiologist
- David Gardner MD, Pathology
- Dave Kanyer, RPh, Assistant Director, Pharmacy
- Cheryl Moore, CLS, Director of Laboratory Service
INPATIENT ANTIBIOGRAM 2016

Gram Negative Rods

<table>
<thead>
<tr>
<th>Organism</th>
<th>Ampicillin</th>
<th>Amp/Clavulanate</th>
<th>Amikacin</th>
<th>Cefazolin (non-urine)</th>
<th>Cefazolin (urine)*</th>
<th>Ceftriaxone</th>
<th>Ceftazidime</th>
<th>Cipro/floxacin</th>
<th>Clindamycin</th>
<th>Doxycycline</th>
<th>High Gentamicin</th>
</tr>
</thead>
<tbody>
<tr>
<td>Enterobacter cloacae complex</td>
<td>66%</td>
</tr>
<tr>
<td>Escherichia coli</td>
<td>522</td>
</tr>
<tr>
<td>Klebsiella oxytoca</td>
<td>36</td>
</tr>
<tr>
<td>Pseudomonas aeruginosa</td>
<td>6</td>
<td>100</td>
</tr>
</tbody>
</table>

Gram Positive Organisms

<table>
<thead>
<tr>
<th>Organism</th>
<th>Ampicillin</th>
<th>Amp/Clavulanate</th>
<th>Amikacin</th>
<th>Cefazolin</th>
<th>Cefuroxime axetil</th>
<th>Gentamicin</th>
<th>Levofloxacin</th>
<th>Linezolid</th>
<th>Meropenem</th>
<th>Piperacillin/Tazobactam</th>
<th>Nitrofurantoin</th>
</tr>
</thead>
<tbody>
<tr>
<td>Enterococcus faecalis</td>
<td>165</td>
<td>104</td>
<td>101</td>
<td>103</td>
<td>106</td>
<td>66</td>
<td>99%</td>
<td>100%</td>
<td>99%</td>
<td>100%</td>
<td>99%</td>
</tr>
<tr>
<td>Enterococcus non faecalis (faecium)</td>
<td>36</td>
</tr>
</tbody>
</table>

COMMENTS:

1. Data are obtained from MIC and disk diffusion testing methods.
2. Shaded rows = % susceptible
 Non-shaded rows = Number of isolates
3. MRSA(methicillin resistant Staph aureus): In 2016, 137 of 329 (41.3%) inpatient Staph aureus isolates were MRSA. In 2015, 117 of 329 (35.6%) inpatient Staph aureus isolates were MRSA. In 2014, 147 of 280 (52.5%) inpatient Staph aureus isolates were MRSA. Thus, there was a 5.8% increase in inpatient MRSA prevalence year over year.
4. ESBL(extended spectrum beta lactamas): In 2016, 213 of 2617 (8.1%) of E. coli isolates (combined inpatient and outpatient) produced ESBL versus 8.3% in 2015, 6.8% in 2014 and 5% in 2013. 7.6% of outpatient and 10.3% of inpatient E. coli isolates were ESBL producers (versus 8.0% and 9.8% respectively for 2015 and 5.1% and 12%, for 2014).

A valid statistical analysis should include 30 or more isolates, organisms with less than 30 isolates are listed for informational purpose only.